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The aim of PyXtalFF project is to provide an automated computational infrastructure to train the interatomic potentials
for inorganic periodic systems from high-end quantum mechanical calculations.

The current version is 0.2.2 at GitHub.

Expect updates upon request by Qiang Zhu’s group at University of Nevada Las Vegas.

Content 1

https://github.com/qzhu2017/pyxtal_ff
https://qzhu2017.github.io
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CHAPTER 1

Installation

1.1 Dependencies

PyXtal_FF is entirely based on Python 3. Thus Python 2 will not be supported!. To make it work, several major
Python libraries are required.

• NumPy>=1.13.3

• SciPy>=1.1.0

• Matplotlib>=2.0.0

• Sklearn>=0.20.0

• Numba>=0.50.1

• ase>=3.18.0

• Pytorch>=1.2

1.2 To install

To install it, one can simply type pip install pyxtal_ff or make a copy of the source code, and then install it
manually.

$ git clone https://github.com/qzhu2017/PyXtal_FF.git
$ cd FF-project
$ python setup.py install

This will install the module. The code can be used within Python via

import pyxtal_ff
print(pyxtal_ff.__version__)

3

https://www.scipy.org/scipylib/download.html
https://www.scipy.org/install.html
https://matplotlib.org
http://scikit-learn.github.io/stable
https://numba.pydata.org
https://wiki.fysik.dtu.dk/ase/
https://pytorch.org
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CHAPTER 2

Background and Theory

2.1 Overall Framework

PyXtalFF involves two important components: descriptors and force field training. Four types of descriptors are
supported in the code, including,

• (Weighted) Behler-Parrinello Symmetry Functions,

• Embedded Atom Descriptors,

• SO(4) Bispectrum Components,

• Smooth SO(3) power spectrum.

For the force field training, the code consists of

• Artificial neural network,

• Generalized linear regressions.

2.2 Atomic Descriptors

In an atomic structure, Cartesian coordinates poorly describe the structural environment. While the energy of a crystal
structure remains unchanged, the Cartesian coordinates change as translational or rotational operation is applied to the
structure1. Thus, physically meaningful descriptor must withhold the energy change as the alterations are performed
to the structural environment. In another words, the descriptor needs to be invariant with respect to translation and
rotational operations, and the exchanges of any equivalent atom. To ensure the descriptor mapping from the atomic
positions smoothly approaching zero beyond the 𝑅𝑐, a cutoff function (𝑓𝑐) is included to most decriptor mapping
schemes, here the exception is the Smooth SO(3) Power Spectrum:

𝑓𝑐(𝑟) =

{︃
1
2 cos

(︁
𝜋 𝑟

𝑅𝑐

)︁
+ 1

2 𝑟 ≤ 𝑅𝑐

0 𝑟 > 𝑅𝑐

1 Albert P Bartok, Risi Kondor and Gabor Csanyi, “On representing chemical environments,” Phys. Rev. B 87, 184115 (2013)

5
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In addition to the cosine function, we also support other types of functions (see cutoff functions)

In the following, the types of descriptors will be explained in details.

2.2.1 Atom Centered Symmetry Function (ACSF)

Behler-Parrinello method—atom-centered descriptors—utilizes a set of symmetry functions2. The symmetry functions
map two atomic Cartesian coordinates to a distribution of distances between atom (radial functions) or three atomic
Cartesian coordinates to a distribution of bond angles (angular functions). These mappings are invariant with respect
to translation, rotation, and permutation of atoms of the system. Therefore, the energy of the system will remain
unchanged under these mapping of symmetry functions.

PyXtal_FF supports three types of symmetry functions:

𝐺
(2)
𝑖 =

∑︁
𝑗 ̸=𝑖

𝑒−𝜂(𝑅𝑖𝑗−𝜇)2 · 𝑓𝑐(𝑅𝑖𝑗)

𝐺
(4)
𝑖 = 21−𝜁

∑︁
𝑗 ̸=𝑖

∑︁
𝑘 ̸=𝑖,𝑗

[(1 + 𝜆 cos 𝜃𝑖𝑗𝑘)𝜁 · 𝑒−𝜂(𝑅2
𝑖𝑗+𝑅2

𝑖𝑘+𝑅2
𝑗𝑘) · 𝑓𝑐(𝑅𝑖𝑗) · 𝑓𝑐(𝑅𝑖𝑘) · 𝑓𝑐(𝑅𝑗𝑘)]

𝐺
(5)
𝑖 = 21−𝜁

∑︁
𝑗 ̸=𝑖

∑︁
𝑘 ̸=𝑖,𝑗

[(1 + 𝜆 cos 𝜃𝑖𝑗𝑘)𝜁 · 𝑒−𝜂(𝑅2
𝑖𝑗+𝑅2

𝑖𝑘) · 𝑓𝑐(𝑅𝑖𝑗) · 𝑓𝑐(𝑅𝑖𝑘)]

where 𝜂 and 𝑅𝑠 are defined as the width and the shift of the symmetry function. As for 𝐺(4) and 𝐺(5), they are a
few of many ways to capture the angular information via three-body interactions (𝜃𝑖𝑗𝑘). 𝜁 determines the strength of
angular information. Finally, 𝜆 values are set to +1 and -1, for inverting the shape of the cosine function.

By default, ACSF splits each different atomic pair and triplets into different descriptors. For instance, a G2 function
of SiO2 system for each Si has Si-Si, Si-O descriptors, while G4 has Si-Si-Si, Si-Si-O, O-Si-O. This is not convenient
for its extension to multiple component systems. Therefore, an alterative solution is to assign the weight function to
each G2 and G4 distances by the atomic number.

𝐺
(2)
𝑖 =

∑︁
𝑗 ̸=𝑖

𝑍𝑗𝑒
−𝜂(𝑅𝑖𝑗−𝜇)2 · 𝑓𝑐(𝑅𝑖𝑗)

𝐺
(4)
𝑖 = 21−𝜁

∑︁
𝑗 ̸=𝑖

∑︁
𝑘 ̸=𝑖,𝑗

𝑍𝑗𝑍𝑘[(1 + 𝜆 cos 𝜃𝑖𝑗𝑘)𝜁 · 𝑒−𝜂(𝑅2
𝑖𝑗+𝑅2

𝑖𝑘+𝑅2
𝑗𝑘) · 𝑓𝑐(𝑅𝑖𝑗) · 𝑓𝑐(𝑅𝑖𝑘) · 𝑓𝑐(𝑅𝑗𝑘)]

𝐺
(5)
𝑖 = 21−𝜁

∑︁
𝑗 ̸=𝑖

∑︁
𝑘 ̸=𝑖,𝑗

𝑍𝑗𝑍𝑘[(1 + 𝜆 cos 𝜃𝑖𝑗𝑘)𝜁 · 𝑒−𝜂(𝑅2
𝑖𝑗+𝑅2

𝑖𝑘) · 𝑓𝑐(𝑅𝑖𝑗) · 𝑓𝑐(𝑅𝑖𝑘)]

The above formula is called wACSF3.

2.2.2 Embedded Atom Density

Embedded atom density (EAD) descriptor4 is inspired by embedded atom method (EAM)—description of atomic
bonding by assuming each atom is embedded in the uniform electron cloud of the neighboring atoms. The EAM
generally consists of a functional form in a scalar uniform electron density for each of the “embedded” atom plus
the short-range nuclear repulsion potential. Given the uniform electron gas model, the EAM only works for metallic

2 Jorg Behler and Michele Parrinello, “Generalized neural-network representation of high-dimensional potential-energy surfaces,” Phys. Rev.
Lett. 98, 146401 (2007)

3

M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi and P. Marquetand, J. Chem. Phys. 148, 241709 (2018)

4 Zhang, C. Hu, B. Jiang, “Embedded atom neural network potentials: Efficient and accurate machine learning with a physically inspired
representation,” The Journal of Physical Chemistry Letters 10 (17) (2019) 4962–4967 (2019).
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systems, even so the EAM can severely underperform in predicting the metallic systems. Therefore, the density can
be modified by including the square of the linear combination the atomic orbital components:

𝜌𝑖(𝑅𝑖𝑗) =

𝑙𝑥+𝑙𝑦+𝑙𝑧=𝐿∑︁
𝑙𝑥,𝑙𝑦,𝑙𝑧

𝐿!

𝑙𝑥!𝑙𝑦!𝑙𝑧!

(︂ 𝑁∑︁
𝑗 ̸=𝑖

𝑍𝑗Φ(𝑅𝑖𝑗)

)︂2

where 𝑍𝑗 represents the atomic number of neighbor atom 𝑗. 𝐿 is the quantized angular momentum, and 𝑙𝑥,𝑦,𝑧 are the
quantized directional-dependent angular momentum. For example, 𝐿 = 2 corresponds to the 𝑑 orbital. Lastly, the
explicit form of Φ is:

Φ(𝑅𝑖𝑗) = 𝑥𝑙𝑥
𝑖𝑗𝑦

𝑙𝑦
𝑖𝑗 𝑧

𝑙𝑧
𝑖𝑗 · 𝑒

−𝜂(𝑅𝑖𝑗−𝜇)2 · 𝑓𝑐(𝑅𝑖𝑗)

According to quantum mechanics, 𝜌 follows the similar procedure in determining the probability density of the states,
i.e. the Born rule.

Furthermore, EAD can be regarded as the improved Gaussian symmetry functions. EAD has no classification between
the radial and angular term. The angular or three-body term is implicitly incorporated in when 𝐿 > 0. By definition,
the computation cost for calculating EAD is cheaper than angular symmetry functions by avoiding the extra sum of
the 𝑘 neighbors. In term of usage, the parameters 𝜂 and 𝜇 are similar to the strategy used in the Gaussian symmetry
functions, and the maximum value for 𝐿 is 3, i.e. up to 𝑓 orbital.

2.2.3 SO(4) Bispectrum Components

The SO(4) bispectrum components5,6 are another type of atom-centered descriptor based on triple correlation of
the atomic neighbor density function on the 3-sphere. The distribution of atoms in an atomic environment can be
represented as a sum of delta functions, this is known as the atomic neighbor density function.

𝜌(𝑟) = 𝛿(𝑟) +
∑︁
𝑖

𝛿(𝑟 − 𝑟𝑖)

Then this function can mapped to the 3 sphere by mapping the atomic coordinates (𝑥, 𝑦, 𝑧) to the 3-sphere by the
following relations:

𝜃 = arccos
(︁𝑧
𝑟

)︁
𝜑 = arctan

(︁𝑦
𝑥

)︁
𝜔 = 𝜋

𝑟

𝑟𝑐𝑢𝑡

Using this mapping, the Atomic Neighbor Density Function is then expanded on the 3-sphere using the Wigner-D
matrix elements, the harmonic functions on the 3-sphere. The resulting expansion coefficients are given by:

𝑐𝑗𝑚′,𝑚 = 𝐷𝑗
𝑚′,𝑚(0) +

∑︁
𝑖

𝐷𝑗
𝑚′,𝑚(𝑟𝑖)

The triple correlation of the Atomic Neighbor Density Function on the 3-sphere is then given by a third order product
of the expansion coefficients by the Fourier theorem.

𝐵𝑗1,𝑗2,𝑗 =

𝑗∑︁
𝑚′,𝑚=−𝑗

𝑐𝑗𝑚′,𝑚

𝑗1∑︁
𝑚′

1,𝑚1=−𝑗1

𝑐𝑗1𝑚′
1,𝑚1

×
𝑗2∑︁

𝑚′
2,𝑚2=−𝑗2

𝑐𝑗2𝑚′
2,𝑚2

𝐶𝑗𝑗1𝑗2
𝑚𝑚1𝑚2

𝐶𝑗𝑗1𝑗2
𝑚′𝑚′

1𝑚
′
2
,

Where C is a Clebsch-Gordan coefficient.
5 Albert P Bartok, Mike C Payne, Risi Kondor and Gabor Csanyi, “Gaussian approximation potentials: The accuracy of quantum mechan-ics,

without the electrons,” Phys. Rev. Lett. 104, 136403 (2010)
6 A.P. Thompson, L.P. Swiler, C.R. Trott, S.M. Foiles and G.J. Tucker, “Spectral neighbor analysis method for automated generation ofquantum-

accurate interatomic potentials,” J. Comput. Phys. 285, 316–330 (2015)

2.2. Atomic Descriptors 7
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2.2.4 Smooth SO(3) Power Spectrum

Now instead of considering a hyperdimensional space, we can derive a similar descriptor by taking the auto correlation
of the atomic neighbor density function through expansions on the 2-sphere and a radial basis on a smoothened atomic
neighbor density function6.

𝜌′ =
∑︁
𝑖

𝑒−𝛼|𝑟−𝑟𝑖|2

This function is then expanded on the 2-sphere using Spherical Harmonics and a radial basis 𝑔𝑛(𝑟) orthonormalized
on the interval (0, 𝑟cut).

𝑐𝑛𝑙𝑚 = ⟨𝑔𝑛𝑌𝑙𝑚|𝜌′⟩ = 4𝜋𝑒−𝛼𝑟2𝑖 𝑌 *
𝑙𝑚(𝑟𝑖)

∫︁ 𝑟cut

0

𝑟2𝑔𝑛(𝑟)𝐼𝑙(2𝛼𝑟𝑟𝑖)𝑒
−𝛼𝑟2𝑑𝑟

Where 𝐼𝑙 is a modified spherical bessel function of the first kind. The autocorrelation or power spectrum is obtained
through the following sum.

𝑝𝑛1𝑛2𝑙 =

+𝑙∑︁
𝑚=−𝑙

𝑐𝑛1𝑙𝑚𝑐*𝑛2𝑙𝑚

2.3 Expression of Target Properties

For all of the regression techniques, the force field training involves fitting of energy, force, and stress simultaneously,
although PyXtal_FF allows the fitting of force or stress to be optional. The energy can be written in the sum of atomic
energies, in which is a functional (𝐹 ) of the descriptor (𝑋𝑖):

𝐸total =

𝑁∑︁
𝑖=1

𝐸𝑖 =

𝑁∑︁
𝑖=1

𝐹𝑖(𝑋𝑖)

Since neural network and generalized linear regressions have well-defined functional forms, analytic derivatives can
be derived by applying the chain rule to obtain the force at each atomic coordinate, 𝑟𝑚:

𝐹𝑚 = −
𝑁∑︁
𝑖=1

𝜕𝐹𝑖(𝑋𝑖)

𝜕𝑋𝑖
· 𝜕𝑋𝑖

𝜕𝑟𝑚

Finally, the stress tensor is acquired through the virial stress relation:

𝑆 = −
𝑁∑︁

𝑚=1

𝑟𝑚 ⊗
𝑁∑︁
𝑖=1

𝜕𝐹𝑖(𝑋𝑖)

𝜕𝑋𝑖
· 𝜕𝑋𝑖

𝜕𝑟𝑚

2.4 Force Field Training

Here, we reveal the functional form (𝐹 ) presented in equation above. The functional form is essentially regarded
as the regression model. Each regression model is species-dependent, i.e. as the the number of species increases,
the regression parameters will increase. This is effectively needed to describe the presence of other chemical types
in complex system. Hence, explanation for the regression models will only consider single-species for the sake of
simplicity.

Furthermore, it is important to choose differentiable functional as well as its derivative due to the existence of force
(𝐹 ) and stress (𝑆) contribution along with the energy (𝐸) in the loss function:

∆ =
1

2𝑀

𝑀∑︁
𝑖=1

[︃(︂
𝐸𝑖 − 𝐸Ref

𝑖

𝑁 𝑖
atom

)︂2

+
𝛽𝑓

3𝑁 𝑖
atom

3𝑁𝑖
atom∑︁

𝑗=1

(𝐹𝑖,𝑗 − 𝐹Ref
𝑖,𝑗 )2 +

𝛽𝑠

6

2∑︁
𝑝=0

𝑝∑︁
𝑞=0

(𝑆𝑝𝑞 − 𝑆Ref
𝑝𝑞 )2

]︃

8 Chapter 2. Background and Theory
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where M is the total number of structures in the training pool, and 𝑁 atom
𝑖 is the total number of atoms in the 𝑖-th

structure. The superscript Ref corresponds to the target property. 𝛽𝑓 and 𝛽𝑠 are the force and stress coefficients re-
spectively. They scale the importance between energy, force, and stress contribution as the force and stress information
can overwhelm the energy information due to their sizes. Additionally, a regularization term can be added to induce
penalty on the entire parameters preventing overfitting:

∆p =
𝛼

2𝑀

𝑚∑︁
𝑖=1

(𝑤𝑖)2

where 𝛼 is a dimensionless number that controls the degree of regularization.

2.4.1 Generalized Linear Regression

This regression methodology is a type of polynomial regression. Essentially, the quantum-mechanical energy, forces,
and stress can be expanded via Taylor series with atom-centered descriptors as the independent variables:

𝐸total = 𝛾0 + 𝛾 ·
𝑁∑︁
𝑖=1

𝑋𝑖 +
1

2

𝑁∑︁
𝑖=1

𝑋𝑇
𝑖 · Γ ·𝑋𝑖

where 𝑁 is the total atoms in a structure. 𝛾0 and 𝛾 are the weights presented in scalar and vector forms. Γ is the
symmetric weight matrix (i.e. Γ12 = Γ21) describing the quadratic terms. In this equation, we only restricted the
expansion up to polynomial 2 due to to enormous increase in the weight parameters.

In consequence, the force on atom 𝑗 and the stress matrix can be derived, respectively:

𝐹𝑚 = −
𝑁∑︁
𝑖=1

(︂
𝛾 · 𝜕𝑋𝑖

𝜕𝑟𝑚
+

1

2

[︂
𝜕𝑋𝑇

𝑖

𝜕𝑟𝑚
· Γ ·𝑋𝑖 + 𝑋𝑇

𝑖 · Γ · 𝜕𝑋𝑖

𝜕𝑟𝑚

]︂)︂

𝑆 = −
𝑁∑︁

𝑚=1

𝑟𝑚 ⊗
𝑁∑︁
𝑖=1

(︂
𝛾 · 𝜕𝑋𝑖

𝜕𝑟𝑚
+

1

2

[︂
𝜕𝑋𝑇

𝑖

𝜕𝑟𝑚
· Γ ·𝑋𝑖 + 𝑋𝑇

𝑖 · Γ · 𝜕𝑋𝑖

𝜕𝑟𝑚

]︂)︂
Notice that the energy, force, and stress share the weights parameters {𝛾0,𝛾1, ...,𝛾𝑁 ,Γ11,Γ12, ...,Γ𝑁𝑁}. Therefore,
a reliable MLP must satisfy the three conditions in term of energy, force, and stress.

2.4.2 Neural Network Regression

Another type of regression model is neural network regression. Due to the set-up of the algorithm, neural network is
suitable for training large data sets. Neural network gains an upper hand from generalized linear regression in term of
the flexibility of the parameters.

A mathematical form to determine any node value can be written as:

𝑋 𝑙
𝑛𝑖

= 𝑎𝑙𝑛𝑖

(︂
𝑏𝑙−1
𝑛𝑖

+

𝑁∑︁
𝑛𝑗=1

𝑊 𝑙−1,𝑙
𝑛𝑗 ,𝑛𝑖

·𝑋 𝑙−1
𝑛𝑗

)︂

The value of a neuron (𝑋 𝑙
𝑛𝑖

) at layer 𝑙 can determined by the relationships between the weights (𝑊 𝑙−1,𝑙
𝑛𝑗 ,𝑛𝑖

), the bias
(𝑏𝑙−1

𝑛𝑖
), and all neurons from the previous layer (𝑋 𝑙−1

𝑛𝑗
). 𝑊 𝑙−1,𝑙

𝑛𝑗 ,𝑛𝑖
specifies the connectivity of neuron 𝑛𝑗 at layer 𝑙−1 to

the neuron 𝑛𝑖 at layer 𝑙. 𝑏𝑙−1
𝑛𝑖

represents the bias of the previous layer that belongs to the neuron 𝑛𝑖. These connectivity
are summed based on the total number of neurons (𝑁 ) at layer 𝑙− 1. Finally, an activation function (𝑎𝑙𝑛𝑖

) is applied to
the summation to induce non-linearity to the neuron (𝑋 𝑙

𝑛𝑖
). 𝑋𝑛𝑖

at the output layer is equivalent to an atomic energy,
and it represents an atom-centered descriptor at the input layer. The collection of atomic energy contributions are
summed to obtain the total energy of the structure.

2.4. Force Field Training 9
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CHAPTER 3

Quick Start

Below is a quick example to quickly make a force field for silicon.

from pyxtal_ff import PyXtal_FF

train_data = "pyxtal_ff/datasets/Si/PyXtal/Si8.json"
descriptors = {'type': 'SOAP',

'Rc': 5.0,
'parameters': {'lmax': 4, 'nmax': 3},
'N_train': 400,

}
model = {'system': ['Si'],

'hiddenlayers': [16, 16],
}

ff = PyXtal_FF(descriptors=descriptors, model=model)
ff.run(mode='train', TrainData=train_data)

The script will first compute the SOAP descriptor . As long as the descritors are obtained, they will be fed to the neural
network trainining. Below is an example output from this quick script.

______ _ _ _ _______ _______
(_____ \ \ \ / / | | (_______|_______)
_____) ) _ \ \/ / |_ ____| | _____ _____

| ____/ | | | ) (| _)/ _ | | | ___) | ___)
| | | |_| |/ /\ \ |_( ( | | |_______| | | |
|_| \__ /_/ \_\___)_||_|_(_______)_| |_|

(____/

================================= version 0.0.9 =================================

Descriptor parameters:
type : SOAP
Rc : 5.0

(continues on next page)
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(continued from previous page)

nmax : 3
lmax : 4

2012 structures have been loaded.
Computing the descriptors...
400 out of 400

Saving descriptor-feature data to Si-SOAP/Train_db.dat

==================================== Training ====================================

No of structures : 400
No of descriptors : 30
No of parameters : 785
No of epochs : 1
Optimizer : lbfgs
Force_coefficient : 0.03
Stress_coefficient : None
Batch_size : None

Iteration 99:
eng_loss: 0.020505 force_loss: 0.022794 stress_loss: 0.000000
→˓regularization: 0.000000

Loss: 0.043299 Energy MAE: 0.1383 Force MAE: 0.2759 Stress
→˓MAE: 0.0000

Iteration 100:
eng_loss: 0.020105 force_loss: 0.022543 stress_loss: 0.000000
→˓regularization: 0.000000

Loss: 0.042649 Energy MAE: 0.1380 Force MAE: 0.2756 Stress
→˓MAE: 0.0000

The training time: 116.85 s
The Neural Network Potential is exported to Si-SOAP/16-16-checkpoint.pth

============================= Evaluating Training Set ============================

The results for energy:
Energy R2 0.993670
Energy MAE 0.138006
Energy RMSE 0.200526

The energy figure is exported to: Si-SOAP/Energy_Train.png

The results for force:
Force R2 0.880971
Force MAE 0.275650
Force RMSE 0.707787

The force figure is exported to: Si-SOAP/Force_Train.png

After the training is complete, the optimized weight information will be stored as Si-SOAP/16-16-checkpoint.
pth, where 16-16 describes the neuron information. In the meantime, the code also provide graphicial output to
facilitate the analysis.
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If you feel that the quality of results are not satisfactory, you can contine the training from the previous run file
(Si-SOAP/16-16-checkpoint.pth) with the restart option.

from pyxtal_ff import PyXtal_FF

train_data = "pyxtal_ff/datasets/Si/PyXtal/Si8.json"
descriptors = {'type': 'SOAP',

'Rc': 5.0,
'parameters': {'lmax': 4, 'nmax': 3},
'N_train': 400,

}
model = {'system': ['Si'],

'hiddenlayers': [16, 16],
'restart': 'Si-SOAP/16-16-checkpoint.pth',
}

ff = PyXtal_FF(descriptors=descriptors, model=model)
ff.run(mode='train', TrainData=train_data)

The results for energy:
Energy R2 0.997013
Energy MAE 0.093162

(continues on next page)
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(continued from previous page)

Energy RMSE 0.137752
The energy figure is exported to: Si-SOAP/Energy_Train.png

The results for force:
Force R2 0.951379
Force MAE 0.200881
Force RMSE 0.452365

The force figure is exported to: Si-SOAP/Force_Train.png

Clearly, running another 100 training steps notably reduces the MAE values. Thereforce, we can continue to train it
by specifying the epoch option.

from pyxtal_ff import PyXtal_FF

train_data = "pyxtal_ff/datasets/Si/PyXtal/Si8.json"
descriptors = {'type': 'SOAP',

'Rc': 5.0,
'parameters': {'lmax': 4, 'nmax': 3},
'N_train': 400,

}
model = {'system': ['Si'],

'hiddenlayers': [16, 16],
'restart': 'Si-SOAP/16-16-checkpoint.pth',
'epoch': 600,
}

ff = PyXtal_FF(descriptors=descriptors, model=model)
ff.run(mode='train', TrainData=train_data)

Below are the results after 1000 steps of training.

14 Chapter 3. Quick Start
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CHAPTER 4

Step by Step instruction

This page illustrates how to run the simulation from the scratch.

from pyxtal_ff import PyXtal_FF

4.1 Define the source of data

TrainData = "pyxtal_ff/datasets/SiO2/OUTCAR_SiO2"

At the moment, we accept the various formats:

• ase.db

• json

• OUTCAR

In principle, one can easily write a utility function to follow the style as shown in the utility section.

Among all different formats, we recommend the use of ase.db. Following ase db, you use need to add the following
additional tags to each atoms object,

from ase.db import connect

# Suppose you have the following variables
# - struc: ase atoms objects
# - eng: total DFT energy
# - forces: DFT Forces: N*3 array
# - stress: DFT Stress: 1*6 stress [in GPa, xx, yy, zz, xy, xz, yz]
# - db_name: the filename to store the information and pass to pyxtal_ff

data = {'dft_energy': eng,
'dft_force': forces,
'dft_stress': stress,

(continues on next page)
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(continued from previous page)

#'group': group,
}

with connect(db_name) as db:
db.write(struc, data=data)

Note that different codes arrange the stress tensor in different order and unit. For PyXtal_FF, we strictly use GPa and
the order of [xx, yy, zz, xy, xz, yz].

4.2 Choosing the descriptor

Four types of descriptors are available (see Atomic Descriptors). Each of them needs some additional parameters to
be defined as follows.

• BehlerParrinello (ACSF, wACSF)

parameters = {'G2': {'eta': [0.003214, 0.035711, 0.071421,
0.124987, 0.214264, 0.357106],

'Rs': [0]},
'G4': {'lambda': [-1, 1],

'zeta': [1],
'eta': [0.000357, 0.028569, 0.089277]}

}

descriptor = {'type': 'ACSF',
'parameters': parameters,
'Rc': 5.0,
}

The wACSF is also supported. In this case, the number of descriptors will linearly dependent on the number of atoms
in the system.

• EAD

parameters = {'L': 2, 'eta': [0.36],
'Rs': [0. , 0.75, 1.5 , 2.25, 3. , 3.75, 4.5]}

descriptor = {'type': 'EAD',
'parameters': parameters,
'Rc': 5.0,
}

• SO4

descriptor = {'type': 'SO4',
'Rc': 5.0,
'parameters': {'lmax': 3},
}

• SO3

descriptor = {'type': 'SO3',
'Rc': 5.0,
'parameters': {'lmax': 4, 'nmax': 3},
}
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4.3 Defining your optimizer

The optimizer is defined by a dictionary which contains 2 keys:

• method

• parameters

Currently, the method options are

• L-BFGS-B

• SGD

• ADAM

If SGD or ADAM is chosen, the default learning rate is 1e-3. Usually, one only needs to specify the method. If no
optimizer is defined, L-BFGS-B will be used.

4.4 Setting the NN parameters

model = {'system' : ['Si','O'],
'hiddenlayers': [30, 30],
'activation': ['tanh', 'tanh', 'linear'],
'batch_size': None,
'epoch': 1000,
'force_coefficient': 0.05,
'alpha': 1e-5,
'path': 'SiO2-BehlerParrinello/',
'restart': None, #'SiO2-BehlerParrinello/30-30-checkpoint.pth',
'optimizer': {'method': 'lbfgs'},
}

• system: a list of elements involved in the training, list, e.g., [‘Si’, ‘O’]

• hiddenlayers: the nodes information used in the training, list or dict, default: [6, 6],

• activation: activation functions used in each layer, list or dict, default: [‘tanh’, ‘tanh’, ‘linear’],

• batch_size: the number of samples (structures) used for each iteration of NN; int, default: all structures,

• force_coefficient: parameter to scale the force contribution relative to the energy in the loss function;
float, default: 0.03,

• stress_coefficient: balance parameter to scale the stress contribution relative to the energy. float, de-
fault: None,

• alpha: L2 penalty (regularization term) parameter; float, default: 1e-5,

• restart: dcontinuing Neural Network training from where it was left off. string, default: None.

• optimizer: optimizers used in NN training.

• epoch: A measure of the number of times all of the training vectors are used once to update the weights. int,
default: 100.

Note that a lot of them have the default parameters. So the simplest case to define the model is to just define the
system key:

model = {'system' : ['Si','O']}

4.3. Defining your optimizer 19
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Also, you can just pick the values from a previous run by defining the restart key:

model = {'restart': 'Si-O-BehlerParrinello/30-30-parameters.json'}

4.5 Setting the linear regression models

model = {'algorithm': 'PR',
'system' : ['Si'],
'force_coefficient': 1e-4,
'order': 1,
'alpha': 0,
}

• alpha: L2 penalty (regularization term) parameter; float, default: 1e-5,

• order: linear regression (1) or quadratic fit (2)

4.6 Invoking the simulation

Finally, one just need to load the defined data, descriptors and NN model to PyXtal_FF and execute the run function.

ff = PyXtal_FF(descriptors=descriptor, model=model)
ff.run(TrainData=TrainData, TestData=TestData)
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CHAPTER 5

Examples

We provide a series of examples of using PyXtal_FF for different material systems (see link to GitHub). We hope they
can give the users a sence about the parameters setup and running time.
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CHAPTER 6

Indices and tables

• genindex

• modindex

• search
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